Капитал предприятия и его структура. Рынок оборотного капитала.
Капитал предприятия. Помимо приведенной теоретической трактовки капитала как фактора производства, большое значение имеет практический подход к этой категории с точки зрения фирмы. Капиталом предприят ия называется стоимостная оценка всего принадлежащего ему имущества. Таким образом, в величину капитала фирмы помимо стоимости машин, оборудования, сооружений и т.п., т.е. собственно фактора капитал, включается: Þ стоимость принадлежащих предприятию других факторов производства (например, принадлежащей ему земли); Þ величина имеющихся у него денежных средств и иных финансовых активов, которые могут быть потрачены на приобретение любого из факторов производства (например, фонд заработной платы, используемый на покупку фактора труд). Оборотный и основной капитал. Различные элементы капитала в процессе производства ведут себя по-разному. Одна составная часть капитала используется однократно и полностью потребляется в ходе каждого цикла производства. Другая часть функционирует в течение нескольких лет, даже десятилетий и потребляется постепенно, на протяжении нескольких производственных циклов. Соответственно первая часть капитала называется оборотным, а вторая — основным капиталом. К оборотному капиталу (или оборотным активам, как его еще называют) относится сырье, материалы, топливо, энергия, полуфабрикаты — все то, из чего изготавливается продукция. После продажи произведенных товаров оборотный капитал полностью возвращается предпринимателю и снова может быть использован в производстве. Основной капитал является главной составной частью имущества любой фирмы и представлен зданиями, сооружениями, машинами, станками, оборудованием, транспортными средствами и т.д. — всем тем, с помощью чего осуществляется производственный процесс. В нашей стране основной капитал принято также называть основными фондами.
В отличие от оборотного, основной капитал имеет высокую стоимость. Поэтому на предприятии возникает проблема финансирования обновления (приобретения) основных фондов. Но поскольку основной капитал используется длительное время и переносит всю свою стоимость на выпускаемые изделия не сразу, а частями, предприятие получает возможность подготовиться к смене оборудования, заблаговременно сделав накопления в форме амортизационных отчислений. К концу срока жизни элементы основного капитала заменяются предприятием новыми за счет средств амортизационного фонда, сформированного в течение всего времени службы основного капитала. Рассмотрим теперь последовательно рынки оборотного и основного капитала. Рынок оборотного капитала как рынок ресурсов. Рынок оборотного капитала является типичным рынком ресурсов. В связи с этим и в принципах его организации, и в механизмах установления на нем равновесия имеется много общего с аналогичными процессами на уже рассмотренном мною рынке трудовых ресурсов. Так, объем спроса на материальные ресурсы, используемые в качестве оборотного капитала, носит производный характер по отношению к спросу на конечную продукцию и зависит от размеров последнего. При этом максимизация прибыли достигается в точке равенства предельного денежного продукта и предельных издержек соответствующего материального ресурса. Другими словами, при оптимизации фирмой спроса на оборотный капитал действует правило МRР = МRС. Точно так же на рынке оборотного капитала могут сложиться совершенная конкуренция, монопсония, монополия и взаимная монополия, т.е. все те основные типы рыночных структур, детальный анализ которых был представлен в предыдущем разделе применительно к рынку труда (см. предыдущий раздел). Соответственно для материальных ресурсов, входящих в состав оборотного капитала типичны уже описанные для каждого из этих типов рынка кривые спроса и предложения.
Совершенная конкуренция (в чистом виде или с элементами монополистической конкуренции) наблюдается на рынках тех материальных ресурсов, где и поставщики, и покупатели многочисленны. Например, ситуацию такого рода можно наблюдать на рынках универсальных, простых комплектующих изделий (резиновых прокладок, металлоизделий, электрической арматуры и пр.). Достаточно часто встречаются монопсония и олигопсония. Именно такое положение имеет, например, место на многих предприятиях, перерабатывающих сельскохозяйственную продукцию. Местный молокозавод выступает по отношению к колхозам и фермерам в роли монопсониста, т.к. других перерабатывающих предприятий поблизости нет, а при длительной транспортировке молоко скисает. Кстати, рыночное всевластие таких монопсонистов-переработчиков служит важной причиной тяжелого положения отечественных сельскохозяйственных предприятий. Последние именно в силу монопсонической структуры рынка вынуждены мириться с навязываемыми им закупочными ценами. Особого комментария заслуживает монополистический (олигополистический) тип рынка. Если на рынке труда соответствующее этому типу одностороннее господство профсоюза можно считать исключением, то на рынках материальных ресурсов такое положение весьма распространено. «Газпром», РАО «ЕЭС России», Транснефть, МПС и другие гигантские предприятия являются именно поставщиками ресурсов, служащих для других фирм в качестве оборотного капитала. Поэтому обычные для нашей страны жалобы директоров промышленных предприятий на то, что в годы реформ цены на электроэнергию, железнодорожные перевозки и сырье росли быстрее цен на готовую продукцию, имеют под собой прочное теоретическое обоснование. Монополисты имеют возможность навязывать своим потребителям завышенные цены на поставляемые ресурсы. Как, например, отдельно взятая фирма может бороться с завышенными железнодорожными тарифами? С ней никто и говорить-то на железной дороге не станет: Не хочешь платить — вези свой товар хоть на лошадях.
Наконец, встречается и взаимная монополия (олигополия). При типичном для России высоком уровне монополизации ситуация, когда поставщиком тех или иных материальных ресурс выступает один, а покупателем — другой монополист, отнюдь является редкостью. Важной особенностью оборотного капитала, является то, что его элементы легко трансформируются в денежные средства, быстро и постоянно меняют товарную форму на денежную и обратно. На деньги закупается сырье, оно перерабатывается в готовую продукцию, та продается вновь превращаясь в деньги и т.д. Денежная компонента оборотного капитала называется оборотными, средствами фирмы. Постоянное наличие достаточного объема оборотных средств является одним из важнейших условий нормального ведения текущего бизнеса, ведь без них становится невозможной (или, по меньшей мере, резко осложняется) закупка сырья, электроэнергии и других элементов оборотного капитала. С объемом оборотных средств тесно связана и финансовая устойчивость предприятия. Действительно, как бы велика ни была стоимость принадлежащего предприятию имущества, мгновенно реализовать ее оно не может: не продавать же заводские помещения, чтобы расплатиться по текущим долгам за электроэнергию! На практике все подобные платежи осуществляются за счет оборотных средств. Рассчитывается даже специальный показатель —коэффициент текущей ликвидности, равный отношению оборотных средств к сумме наиболее срочных обязательств фирмы. В развитых странах падение коэффициента текущей ликвидности ниже единицы обычно служит предвестником банкротства фирмы. В России этот коэффициент упал в среднем по всему народному хозяйству ниже единицы еще в 1996 г., что является показателем тяжелейшего положения всех предприятий страны.
Рынок основного капитала. Дисконтирование. Организация нового производства невозможна без капиталовложений в сооружения, здания, оборудование. Дальнейшая работа предприятия также требует затрат, связанных с обновлением и восстановлением действующего основного капитала. Основной капитал является производственным фактором длительного пользования: его участие в хозяйственной деятельности фирмы продолжается в течение нескольких лет, а то и десятилетий с момента приобретения. В связи с этим особую важность в функционировании рынка основного капитала приобретает фактор времени. В самом деле, деятельность любого производителя сопряжена с необходимостью осуществления капиталовложений, или инвестиций — расходования денежных средств в данный момент в расчете получить определенный доход в будущем. Чтобы принять разумное решение о покупке оборудования или строительстве новой очереди завода, фирме нужно сравнить предстоящие затраты с отдачей, которая будет получена благодаря им. Принципиальное значение здесь имеет то, что затраты и доходы, связанные с инвестициями, имеют разную временную локализацию. Расходы следует сделать уже в настоящее время, а доходы они принесут лишь в будущем. Следовательно, для принятия обоснованного инвестиционного решения следует уметь сопоставлять текущую стоимость (сегодняшние затраты) с будущей стоимостью (потенциальные доходы). Каким же образом решается проблема измерения «современной стоимости будущих доходов»? С экономической точки зрения одинаковые суммы, имеющие разную временную локализацию, отличаются по размерам. Действительно, существование в экономике прибыльных вариантов инвестирования денежных средств дает возможность получать доход от любой имеющейся в настоящий момент суммы. Доходы же будущих периодов вплоть до своего реального поступления дополнительную прибыль приносить не могут. Например, 100 руб., которыми человек располагает на 1 января 1999 г., могут быть положены в банк, обменены на доллары, вложены в акции российских предприятий и т.п. Если вложение денег оправдает себя, то к началу 2000 г. 100 руб. превратятся, скажем, в 150 руб. В то же время точно такая же сумма в 100 руб. получение которой предстоит только 1 января 2000 г., за весь 1999 г. не увеличится ни на копейку. Другими словами, если мы дождемся совпадения временных параметров (скажем, будем проводить сравнение обеих сумм 1 января 2000 г.), то убедимся что современная денежная купюра оказалась в полтора раза ценнее такой же, но полученной позже (150 руб. против 100 руб.).
Сопоставлять денежные суммы, получаемые в разное время, позволяет разработанный экономистами метод дисконтирования. Дисконтирование делает возможным сравнение денежных потоков, получаемых в разное время, путем приведения (пересчета) их к одному временному периоду. 1. Итак, мы установили, что одна и та же сумма денежных средств будет иметь большую ценность в данный момент времени по сравнению с будущим. Следовательно, для обеспечения сопоставимости текущих и будущих доходов нужно скорректировать будущие поступления в сторону уменьшения. Процедура дисконтирования как раз и состоит в уменьшением будущего дохода (само слово дисконт означает вычет, скидку. В коммерческой практике весьма распространена ситуация, когда кредитору – владельцу векселя — необходимо получить по нему деньги до истечения срока. Разумеется, выдавшему вексель должнику такое ускоренное возвращение займа невыгодно и он на него не согласится. Однако, если вексель надежен, его часто готов купить банк, но не по полной стоимости, а со скидкой, с дисконтом. Для банка сумма дисконта превратится в прибыль после истечения срока и погашения векселя должником по его полной стоимости. Для продавца же векселя выгода состоит в том, что он обменивает будущий доход на пусть и несколько меньший, но современный доход. № 16 Микроэкономика. Теория и российская практика / Под Ред. А.Г. Грязновой и А.Ю. Юданова. М., ИТД «КноРус», 1999, стр. 430). Чтобы научиться определять количественные масштабы этого уменьшения необходимо рассмотреть механизм образования будущего дохода. Предположим, что в нашем распоряжении имеется 100000 руб. При этом есть возможность вложения данной суммы на банковский счет, ставка по которому составляет 10% годовых. Тогда будущая стоимость инвестируемых нами сегодня 100000 руб. через год составит 110000 руб.: 100000 + 100000 х 0,1 = 100000 х (1 + 0,1) = 110000. (вклад) (проценты по (вклад с процентами) вкладу) Спустя 2 года текущая сумма возрастет до 121000 руб.: 110000 + 110000 х 0,1 = 110000 х (1 + 0,1) = 100000 х (1 + 0.1)2 = 121000. Через 3 года наш доход составит 133100 руб.: 121000 + 121000 х 0,1 = 100000 х (1 + 0,1)3 = 133 100. В общем виде формула расчета будущего дохода будет: (1) ТRn = РDV х (1+i)n, где: ТRn — совокупный доход n-го года; РDV — текущая стоимость; n — количество лет; i — процентная ставка.
Формула (1) позволяет рассчитать будущий совокупный доход сегодняшних капиталовложений. Используя ее, мы также можем решить обратную задачу: определить текущую стоимость будущего дохода: РDV = ТRn/(1 + i)n, или РDV = ТRn х Кd (2), где: Кd = 1/(1+ i)n — коэффициент дисконтирования. Величину РDV, полученную путем умножения совокупного будущего дохода на коэффициент дисконтирования, еще называют текущей дисконтированной стоимостью будущего дохода, поскольку коэффициент дисконтирования позволяет уравнять будущую и текущую стоимости. А т.к. численное значение коэффициента дисконтирования всегда меньше единицы, то уравнивание происходит за счет уменьшения будущего совокупного дохода на величину, обратно пропорциональную ставке процента. PDV инвестиционного проекта. До сих пор мы анализировали довольно редкую ситуацию, при которой капитал инвестируется на длительный срок, авсе доходы получаются единовременно по его окончании. В реальных инвестиционных проектах чаще реализуется иная схема: доходы порциями поступают в течение всего срока осуществления проекта. Пусть, например, некая фирма приобретает мощный компьютер (сервер) стоимостью 1000000 руб. Согласно бизнес-плану сменить его более новой машиной предполагается через 3 года, а за это время в результате его внедрения будут получены следующие суммы валового (т.е. включающего амортизацию) дохода: в 1-й год — 400000, во 2-й — 800000, в 3-й — 200000 руб. В этом случае текущая дисконтированная стоимость всего проекта будет складываться из суммы дисконтированных стоимостей доходов каждого года: РDVпроекта = РDV1 + РDV2 + РDV3 = ТR1 / (1 + i)1 + ТR2 / (1 + i)2 + ТR3 / (1 + i)3. Если принять, как и в прошлом примере, ставку процента за 10%, то в численной форме текущая дисконтированная стоимость составит РDVпроекта = 400/1,1 + 800/1,21 + 200/1,311 = 363,6 + 661,2 + 152,6 = 1177,4 тыс. руб. В общем же виде формула текущей дисконтированной стоимости проекта, длящегося n лет, выглядит: РDVпроекта = РDV1 + РDV2 +... + РDVn (3). PDV фиксированного дохода в бесконечном периоде. Еще один важный случай — оценка РDV проекта, когда доход постоянен по величине и выплачивается неограниченное число лет. В чистом виде такая ситуация типична для некоторых видов ценных бумаг — так называемых бессрочных облигаций и привилегированных акции. При их выпуске прямо оговаривается, что вложив некоторую сумму в определенную фирму, вы приобретаете право на стабильный доход на все время, пока существует эта компания. Присмотримся внимательно к формуле (3). Даже если число n будет стремиться к бесконечности, РDVпроекта составит конечную величину. Дело в том, что чем дальше в будущее отдален некоторый фиксированный доход, тем меньшую величину он составляет. Ведь: РDVn = ТRconst/(1 + i)n. Числитель этой дроби по условиям выпуска названных ценных бумаг постоянен, а знаменатель с каждым годом возрастает, причем очень быстро (по экспоненте). Поэтому реальный вклад в величину РDVпроекта могут внести только несколько первых членов суммы, входящей в формулу (3). Все же последующие пренебрежительно малы и почти ничего к ней не добавляют. Математики называют ряды такого вида бесконечно убывающей геометрической прогрессией и давно вывели формулу для определения ее величины: РDVбеск.проекта = ТRconst/i (4). Именно так может быть подсчитана цена привилегированной акции или бессрочной облигации, ибо все будущие доходы от нее в дисконтированной (приведенной к настоящему времени) форме составят ровно эту величину. Но если бы формула (4) касалась только стоимости некоторых разновидностей ценных бумаг, ей вряд ли стоило бы уделять здесь место — слишком уж частный это вопрос. Гораздо важней то, что тому же закону в основном подчиняются все относительно постоянные доходы. Например, более или менее постоянную величину составляет рента с земельного участка, арендная плата за помещение, средний уровень дивидендов по акциям и т.д. Если доход от всех этих видов имущества будет колебаться от года к году на несколько или даже на десятки процентов, формула (4) все равно останется применимой. Поэтому на практике формула (4) применяется ко всем случаям неограниченно долго получаемых доходов, если они колеблются не слишком сильно. В дальнейшем мы убедимся, что по этой причине с ее помощью рассчитываются очень многие важные экономические параметры: цена земли, цена акции и т.п. С помощью текущей дисконтированной стоимости мы научились приводить в соизмеримый вид произведенные затраты и получаемые в разное время доходы. Это дает возможность правильно оценить эффективность осуществляемых вложений и сделать выбор в пользу наиболее выгодного инвестиционного проекта. Чистая дисконтированная стоимость (NРV) – показатель, позволяющий достоверно определить выгодность инвестиционного проекта. Будущий совокупный доход, приведенный к текущему периоду с помощью дисконтирования, есть текущая дисконтированная стоимость (РDVпроекта). Размер понесенных фирмой затрат отражают осуществляемые ею инвестиции (I). Очевидно, что выгода от осуществления проекта (ее-то и называют чистой дисконтированной стоимостью) будет измеряться разностью обеих величин и ее можно рассчитать по формуле: МРV = РDVпроекта – I. (5) Из формулы (5) видно, что инвестирование будет выгодным в случае превышения получаемых доходов над произведенными вложениями, т.е. при положительном значении показателя чистой дисконтированной стоимости. Следовательно, если МРV > О, инвестиционный проект можно считать вполне приемлемым, а вложение капитала целесообразным. В противном случае (МРV < 0) будет правильнее отказаться от намечаемого проекта, т.к. предполагаемые вложения не окупятся и фирма-инвестор понесет убытки. Расчет чистой дисконтированной стоимости во многом упрощает решение стоящей перед любой фирмой сложной и, одновременно, жизненно важной задачи выбора наиболее выгодного инвестиционного проекта. Приведем условный пример такого расчета. Допустим, намечаемый проект требует от предприятия вложения инвестиций в размере 20000 руб. в машину, которая будет полностью амортизирована в течение четырех лет. Совокупный доход (включая амортизационные взносы), ожидаемый от данного проекта, достигнет суммы 5000 рублей в 1-й и 2-й и 8000 руб. в 3-й и 4-й годы. Необходимо определить выгодность проекта, учитывая, что ставка процента, составляет 10% в год. Иными словами, требуется определить чистую дисконтированную стоимость, т.е. сопоставить общие будущие поступления, приведенные к текущему периоду, и требуемые инвестиции. Решение задачи выглядит так: МРV = РDVпроекта – I = 5000 х 1/(1 + 0,1) + 5000 х 1/(1 + 0,1)2 + 8000 х 1/(1 + + 0,1)3 + 8000 х 1 (1 + 0,1)4 – 20000 = 20151,4 – 20000 = 151,4 руб. Поскольку чистая дисконтированная стоимость в нашем примере имеет положительный знак, планируемый проект является благоприятным для фирмы. Он позволяет получить более высокий доход, чем при вложении денег в банк. Обратим, однако, внимание и на то, насколько важное значение для принятия правильного решения имеет использование метода дисконтирования. Если бы мы действовали неправильно и просто сложили бы доходы за разные годы, как это обычно делают непрофессионалы, то проект показался бы нам очень выгодным (5000 + 5000 + 8000 + 8000 = 26000). Могло создаться впечатление, что, соглашаясь на его реализацию, мы выигрываем целых 6000 руб. В действительности выигрыш составляет лишь полторы сотни, т.е. проект находится буквально на грани приемлемости.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|